Zum Inhalt springen

Neue Ansätze für Therapie und Antibiotika-Forschung

Antimikrobieller Abwehrmechanismen von Paneth-Zell Defensinen
Foto: Uni Tübingen / Jan Wehkamp

Eine Forschergruppe am Uniklinikum Tübingen berichtet in einer aktuell in „Proceedings“ der National Academy of Science USA“ (PNAS) veröffentlichten Arbeit, erstmals über einen von ihr entdeckten neuen Mechanismus, wie körpereigene antibiotische Stoffe das Mikrobiom und seine Bakterienzusammensetzung regulieren. Dieser Mechanismus liefert ein grundlegendes Verständnis über den Aufbau der Darmbarriere. „Es stößt die Tür auf für zukünftige Ansatzpunkte für neue Therapien, aber auch für die Antibiotika-Entwicklung, sagt der Leiter der Arbeitsgruppe, Professor Dr. med. Jan Wehkamp vom Universitätsklinikum Tübingen.

Das Mikrobiom im Darm spielt eine überlebenswichtige Rolle für die Gesundheit und für die körpereigene Immunabwehr des Menschen. Ein fehlendes Gleichgewicht, ist mit chronisch entzündlichen Erkrankungen des Darms, aber auch mit Typ 2 Diabetes und anderen Krankheiten verknüpft.

Splitterbomben-Effekt bei Defensin HD-5 stärkt die Abwehr

Eine entscheidende Rolle spielt der von den Forschern entdeckte „Splitterbomben“-Effekt von körpereigenen Antibiotika, den sogenannten Defensinen (Peptide), die in den Paneth´schen Körnerzellen gebildet werden. „Das aus dem im Darm abgegebene körpereigene Defensin HD-5 zersplittert in Fragmente, wenn es Bakterien im Darmschleim unter bestimmten Bedingungen ausgesetzt ist. Bei den Fragmenten handelt es sich allerdings nicht um unwirksamen Abfall, wie man bisher dachte, sondern sie sind antimikrobiell aktiv gegen kommensale, harmlose Bakterien und krankheitserregende, pathogene Bakterien“, beschreibt Prof. Wehkamp die Entdeckung. In den verschiedenen Fragmenten haben die Forscher im Labor insgesamt 250 neue antibiotische Kombinationen gefunden. Dadurch wird das antimikrobielle Spektrum gegen mögliche Eindringlinge dramatisch erhöht, so Wehkamp.

Die Tübinger Arbeitsgruppe, die schon seit vielen Jahren das Mikrobiom erforscht, konnte bereits 2011 in „Nature“ publizieren, dass Defensine eine wichtige Rolle beim Erhalt des Gleichgewichts zwischen Bakterien und Körperoberflächen aller Organismen, besonders (aber nicht nur) im Darm spielen.
In der aktuellen Publikation in PNAS zeigen die Wissenschaftler, wie Umweltbedingungen im Darminnern die Aktivität und Struktur der Peptide beeinflussen: Unter sauerstoffarmen, reduzierten Bedingungen – die häufig im Darm herrschen – wird das zuvor in gefalteter (oxidierter) Form sezernierte HD-5-Peptid aufgeklappt. Durch die neue lineare Struktur wird es anfälliger für den Abbau: So können die im Darm vorkommende Proteasen das Defensin HD-5 in viele Fragmente zerschneiden – und stellen so die antimikrobielle Waffe scharf.

Defensin-HD6 lässt nichts durch das Netz

Interessanterweise hat die Natur bei einem anderen Peptid – dem Defensin HD-6 – einen völlig anderen Verteidigungsmechanismus hervorgebracht: Defensin HD-6 wird auch unter reduzierten Bedingungen vor dem Abbau durch die Proteasen geschützt, weil es als Barriere ein undurchdringliches Netz ausgebildet hat. So berichten die Forscher in der aktuellen Publikation, dass das Defensin HD-6 im natürlichen Darmschleim völlig stabil bleibt, während HD-5 im Darmschleim in Fragmente zerlegt wird.
Die Forscher stellten in einem nächsten Schritt einzelne Fragmente von Defensin HD-5 künstlich her und setzen sie verschiedenen Bakterien aus. Das Ergebnis: Die Fragmente zeigten erstaunliche variable antimikrobielle Aktivität gegen harmlose und krankheitserregende Bakterien, darunter auch gram-negative-Bakterien, die für die Ausbildung von Antibiotikaresistenzen berüchtigt sind.

Größere Vielfalt der Darmflora bei Mäusen

Die Tübinger Arbeitsgruppe konnte außerdem nachweisen, dass HD-5-Fragmente die Bakterienzusammensetzung im Darm von Mäusen beeinflussen und die Vielfalt der Flora im Dünndarm erhöhen. So wurde Mäusen ein bestimmtes HD-5-Fragment oral gegeben – im Vergleich zu einer Kontrollgruppe, die normales Futter erhielt. Das überraschende Ergebnis: Im Darm der Mäuse führte die Verabreichung des Fragments zu einem erhöhten Anteil der Bakterien Accermansia sp. In früheren Arbeiten wurde ein verringertes Aufkommen dieser „guten“ Bakterien mit verschiedenen Krankheitsbildern wie Diabetes mellitus und Metabolische Syndrom assoziiert. „Die Fragmentierung erhöht die Variabilität der antimikrobiellen Abwehr, besonders weil es sich bei dem Ausgangspeptid um eines der am meisten produzierten und sezernierten Peptide des gesamten Organismus handelt“, sagt Jan Wehkamp.

Therapeutische Möglichkeiten und neue Antibiotika

„Unsere Pionierarbeit gibt eine Einsicht in ein ganz neues Verständnis, wie die Abwehr gegen Bakterien funktioniert, aber auch wie das Mikrobiom reguliert wird. Dies ist von hohem Interesse, da weltweit unter Hochdruck am Mikrobiom geforscht wird“, fasst Jan Wehkamp zusammen. Mit der Entdeckung der Tübinger Gruppe eröffnen sich Chancen, neue antibiotische Substanzen als Modulatoren des Mikrobioms oder neue Antibiotikaformen zu finden.

Die weitere Untersuchung von Fragmenten antimikrobieller Peptide und ihre Rolle bei der Abwehr von Mikroorganismen auch im Hinblick auf mögliche Therapieansätze bei antibiotika-resistenten Bakterien steht allerdings erst am Anfang. Die Fragmente der Tübinger Arbeitsgruppe lassen sich einfach produzieren und könnten künftig in der Therapie verschiedener Erkrankungen eine Rolle spielen.

Die Arbeit der Gruppe, die im Rahmen von Jan Wehkamps Heisenberg-Professur für angeborene Immunabwehr an der Medizinischen Universitätsklinik Tübingen angesiedelt ist, entstand im Rahmen des Exzellenzcluster Entzündungsforschung der Universität Tübingen.

Es werden verschiedene Möglichkeiten antimikrobieller Abwehrmechanismen von Paneth-Zell Defensinen gezeigt. Während HD-5ox eine direkte antimikrobielle Wirkung zeigt, wird HD-5red von Proteasen in verschiedene, antimikrobiell aktive Fragmente gespalten. Im Gegensatz zu HD-5, ist weder HD-6ox noch HD-6red anfällig für den Verdau durch Proteasen weil dieses Defensin in der Lage ist Nanonetz-Strukturen zum Einfangen von Bakterien zu bilden. Nur HD-6red zeigt nach Veränderung der Struktur zusätzlich eine antimikrobielle Wirkung. Die verschiedenen Mechanismen sind eng miteinander verknüpft und schützen so unsere Oberfläche und regulieren die Mikrobiomzusammensetzung, was hier schematisch verdeutlicht wird.

Bevorstehende Events: